Rare Decays of Heavy Flavor

Vyacheslav Krutelyov Texas A&M University

For B Group
Oct 29, 2005
CDF Collaboration Meeting
FNAL

Outlines

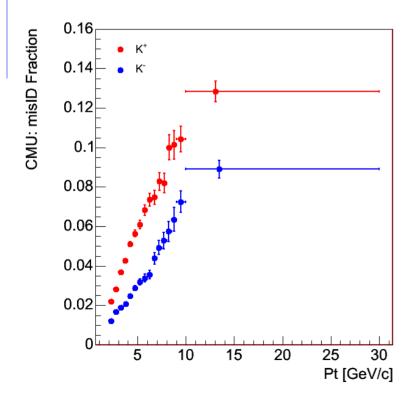
- Overview of Motivations
- Rare Charm decays
 - >Method
 - >FCNCs
 - •D⁰ $\rightarrow \mu^+\mu^-$
 - •D⁺ \rightarrow l⁺l⁻ π ⁺, D⁺_s \rightarrow l⁺l⁻K⁺
 - >Others (FCNC², LFV,LNV) $D_x \rightarrow llh$
 - $>D^0 \rightarrow K^+\pi^-$
- Rare B decays
 - >Method
 - >FCNCs
 - •B_{s(d)} $\rightarrow \mu^+\mu^-$
 - • $(B/B_s/B+/\Lambda_b)\rightarrow l^+l^-h$
 - >Others (FCNC², LFV,LNV) $B_x \rightarrow llh$
- Prospects
- Summary

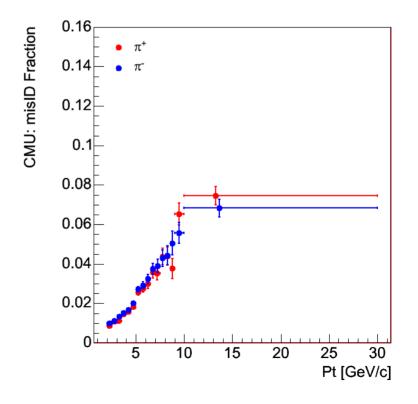
Motivations (considering H→llh modes only)

- Motivated by probing for New Physics
- Search/constraints on FCNC decays is a remarkable tool in a search/constraint of New Physics
 - >Charm FCNCs are c→u transition
 - •Relatively small interest due to GIM suppression
 - >B-FCNCs are (most often) b→s transition
 - •b→s γ has been a NW search and constraint workhorse for years
 - Now at a (brick?) wall due to systematics in both experiment and theory
 - •b \rightarrow s $\mu^+\mu^-$ for B-mesons and Λ_b has a potential of probing NP via shape analysys [m($\mu^+\mu^-$) or (a)symmetry]
 - •B_s $\rightarrow \mu^+\mu^-$ has a strong NP probe potential once the experimental sensitivity is available
- Probing other processes, like
 - >double-FCNC (FCNC²) -- more "rare" than FCNC and the benefit is smaller
 - >lepton flavor/number violation none in SM (0 uncert) \rightarrow if seen \rightarrow NP

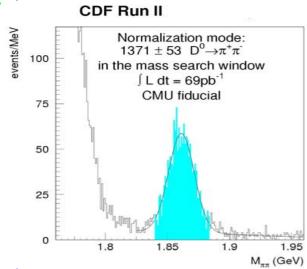
Rare Charm decays

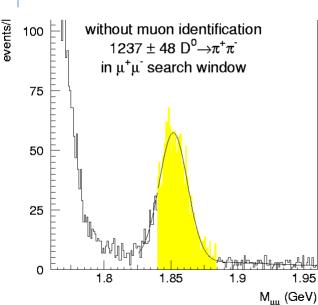
- FCNCs are GIM suppressed in SM >Long-range effects (decays via resonances) dominate the Bratio
- Tup-to expt values are possible in R-parity violating SUSY or some non-universal SUSY scenarios


>FCNCs •D⁰ $\rightarrow \mu^+\mu^-$ •D⁺ \rightarrow l⁺l⁻ π ⁺, D⁺_s \rightarrow μ ⁺ μ ⁻K⁺ >Others (FCNC², LFV,LNV) D_v→llh


Experimental method:

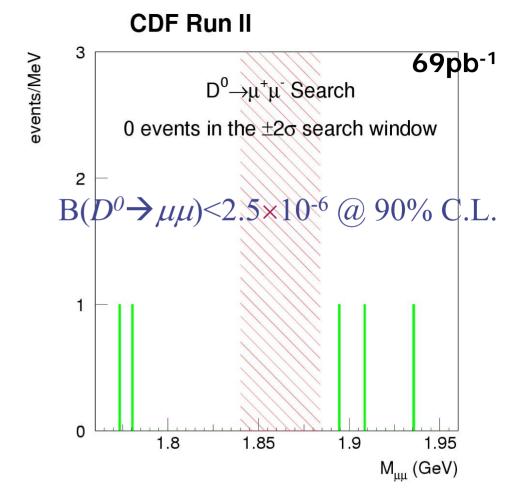
- Take a D \rightarrow hh or D \rightarrow hhh as normalization mode with a D*-tag
 - Signal mode naturally comes in the same sample
 - Normn Bratios are large due to large V_{cs} and V_{cd}
 - >Get "peaking" N_{bg} by applying h→ μ fake rates
 - •h= π \rightarrow μ gives the best match in mass ($m_{\mu} \approx m_{\pi}$)
 - >Get "flat" N_{bg} from sidebands
 - >"Unblind" by looking at lepton ID


Fake rates $K, \pi \rightarrow \mu$


- Substantial progress since the measurement of D $\rightarrow \mu\mu$ with 69 pb⁻¹
 - >Thanks to E. Berry, I. Furic, et al.
 - •The rates are measured from $D^* \rightarrow \pi D(K\pi)$ sample for CMU, CMP, CMX
 - The precision allows for parameterization in 1+ variables (e.g., not p_T only)
- Fake rates are essential for rare D-decays
 - >Less so for rare B-decays due to smaller B→hh Bratios [$\sim (V_{cb}/V_{cs})^2 \sim 0.01$ suppression]
 - •Can become essential for $B \rightarrow \mu\mu$ due to its small value and good exp sensitivity

$D^0 \rightarrow \mu\mu$ search (69 pb⁻¹)

- $^{\circ}$ Use D*±→D₀π[±] tagged events
- \bigcirc Use $D_0 \rightarrow \pi^+\pi^-$ as a normalization mode.
 - >Blind from μ ID in 1.840<m_{uu}<1.882 GeV
- Cuts:
 - $> |d_0(\mu, \pi)| > 120 \mu m, |d_{xy}(D_0)| < 150 \mu m$
 - $\Delta \phi(\mu\mu) > 0.085$
- *Background:
 - >combinatorial (from right sideband) expect 1.5±0.7
 - \rightarrow misID expect N($D_0 \rightarrow \pi^+ \pi^-$) \times P(misID)² $\approx 0.3 \pm 0.1$


$$8r(D^{0} \to \mu\mu) \leq \frac{N_{CL}(D^{0} \to \mu\mu)\varepsilon(D^{0} \to \pi\pi)}{N(D^{0} \to \pi\pi)\varepsilon(D^{0} \to \mu\mu)} 8r(D^{0} \to \pi\pi)$$

$D^0 \rightarrow \mu\mu$ search

Latest result from BaBar is $B(D^0 \rightarrow \mu\mu) < 1.3 \times 10^{-6}$ @ 90% C.L. \rightarrow cf. $Br_{SM} \sim 10^{-13}$

With 1 fb⁻¹ expect $\sim \times 10-20$ improvement (to $\sim 1 \times 10^{-7}$)

>More data and now cover CMX

$D^+/D_s^+ \rightarrow 11h$ searches

- © Only very rough estimates now
 - >Straightforward to address $D_x \rightarrow \mu\mu h$ models
 - Need to measure h→e fake rates to use for remaining dilepton modes
 - Work in progress by R. Harr and D. Dhaliwal
- With 1 fb⁻¹ should be able to achieve sensitivity comparable/better than currently available (PDG ← BaBar/Cleo-c/Belle/Hera-B)

$D^0 \rightarrow K^+\pi^-$

- $^{\circ}$ D⁰ \rightarrow K⁺ π is (mostly) double Cabibbo-suppressed (DCS) decay
 - •Compared to $Br(D^0 \rightarrow K^-\pi^+): Br(D^0 \rightarrow K^+\pi^-) \sim (V_{cs}V_{ud})^2: (V_{cd}V_{us})^2$
 - ◆Can also proceed via D⁰—D⁰bar mixing \checkmark Br(D⁰→K⁺π⁻) < 1.6×10⁻⁵ @95% CL (CLEO-2)
 - >Br(D⁰ \rightarrow K⁻ π ⁺)=3.81±0.09 % Br(D⁰ \rightarrow K⁺ π ⁻)=(1.38±0.11)×10⁻⁴ (PDG: mostly BaBar)
- $^{\circ}$ Measure R=WS/RS=Br(D⁰→K⁺π⁻):Br(D⁰→K⁻π⁺) [time integrated]
 - •WS/RS=0.362±0.029% (PDG)
 - •Use π charge from D* (D*+ $\rightarrow \pi$ +D0 or cc) to tag D0/anti-D0
 - •Vtx cuts, remove $M_{RS} \sim M_{WS}$, use dE/dX
- \bigcirc (unblinded, \sim blessed) WS/RS=0.405±0.021±0.012% = 0.405±0.024%

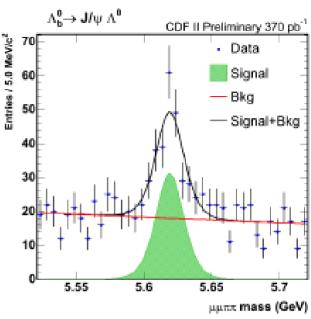
Improve uncert-ty by ~50% with 1fb⁻¹

Rare B-decays

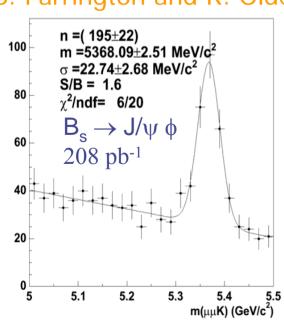
- FCNCs are suppressed in SM
 - >Much softer suppression than in D→llh
- The leading modes probe $b \rightarrow s$ transition in many aspects
- **Up-to expt values are possible in
 - >R-parity violating SUSY
 - > numerous SUSY scenarios with large tanβ

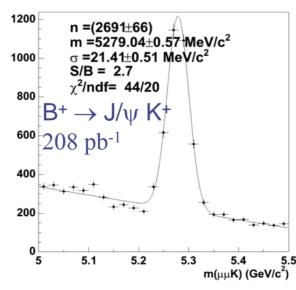
H^0/A^0 >FCNCs • $(B/B_s/B+/\Lambda_h)\rightarrow l^+l^-h$ >(FCNC², LFV,LNV, etc)

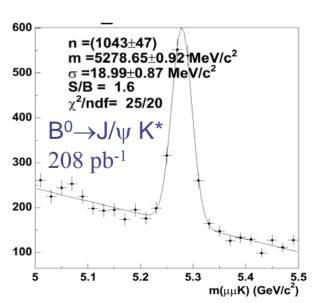
 $B_v \rightarrow llh$


MSSM

Experimental method: Take $B/B_s/B^+/\Lambda_b \rightarrow J/\psi$ h as normalization mode


- Signal mode naturally comes in the same trigger sample
- Normn Bratios are relatively large
- $\rightarrow B \rightarrow \mu\mu$ uses RAREB (no SVT/LXY) and $B \rightarrow \mu\mu$ h use RAREB LXY trigger
 - •Due to mass selections in noSVT/LXY triggers
- >Get "flat" N_{bg} from sidebands (bgd is mostly combinatoric)
 - *Discriminate based on vertex and dilepton ID
 - •Use uncorrelated disc variables to factorize bgd cut power to improve statistics
 - •Use either a likelihood or a box cut
- >Optimize on expected Bratio (~S/B^{1/2}) for a limit (measmnt)
- >"Unblind" by looking inside the mass window

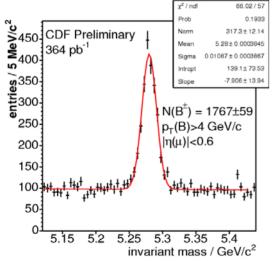

Normalization modes for B-FCNCs


 $>B^+ \rightarrow J/\psi K^+$ is also used for $B_{s(d)} \rightarrow \mu^+ \mu^-$

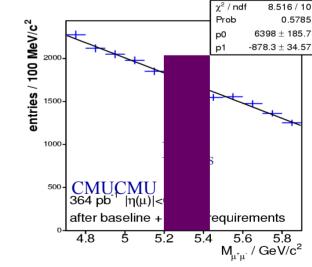
S. Farrington and R. Oldeman

S. Krutelyov Rare decays of heavy flavor

$B_{s(d)} \rightarrow \mu^+ \mu^-$ Ingredients


𝔻 Normalize to B+→J/ψ K⁺ decays

$$BR(B_s \to \mu^+ \mu^-) = \frac{N_{Bs}}{(\alpha \varepsilon)_{Bs}^{total}} \frac{(\alpha \varepsilon)_{B+}^{total}}{N_{B+}} \frac{f_u}{f_s} BR(B^+ \to \mu^+ \mu^- K^+)$$

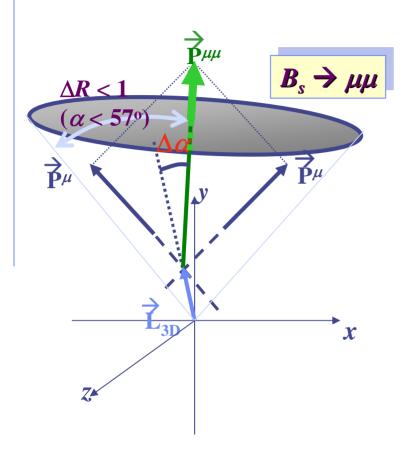

Construct discriminant to select Bs signal and suppress bgd

- MC simulation for signal and mass sidebands for bgd estimate

- Optimize on minimum expected 90% C.L. upper limit

$$N(CMUCMU) = 1767\pm59$$

 $N(CMUCMX) = 698\pm39$



$$N(CMUCMU) = 6242$$

 $N(CMUCMX) = 4908$

Signal sample

Normalization mode

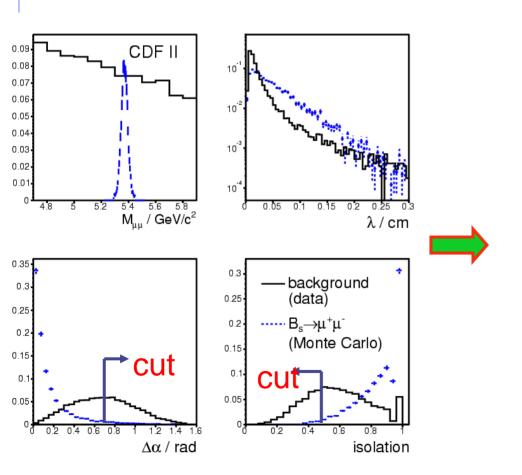
$B_{s(d)} \rightarrow \mu^{+}\mu^{-}$ Signal vs. Bgd Discrimination

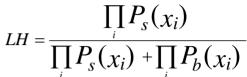
 $> \mu + \mu - \text{mass}, M: |M-M_B| < 60 \text{ MeV/c}^2 (2.5\sigma)$

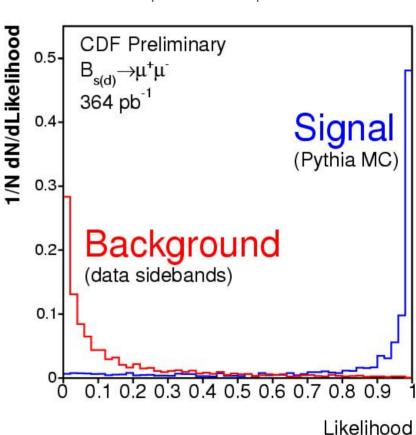
sidebands: 2×0.5 GeV/c² on the sides

signal: |M-5279|<60 MeV/c² (B_d⁰) or |M-5279|<60 MeV/c² (B_s⁰)

Proper decay-length (
$$\lambda$$
): $\lambda = \frac{cL_{3D}M}{|\vec{p}(B)|}$


>Isolation (Iso):
$$Iso = \frac{p_T(B)}{p_T(B) + \sum_i p_T^i(\Delta R_i < 1)}$$


(fraction of p_T from $B \rightarrow \mu\mu$ within $\Delta R = (\Delta \eta^2 + \Delta \phi^2)^{1/2}$ cone of 1)


>"pointing (
$$\Delta \alpha$$
)": $\Delta \alpha = \angle (\vec{p}(B) - \vec{L}_{3D})$ (3D angle between B_s momentum and decay axis)

$B_{s(d)} \rightarrow \mu^{+}\mu^{-}$ Signal vs. Bgd Discrimination

© Construct Likelihood discriminant

$B_{s(d)} \rightarrow \mu^+\mu^-$ Optimization

and results

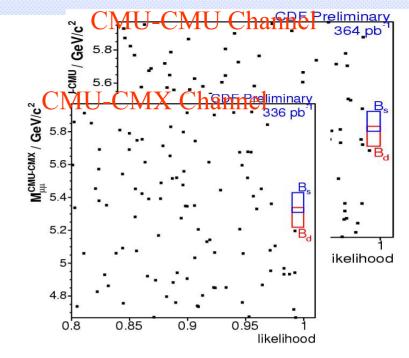
© Optimize using *a priory* expected upper limit (assumes no signal)

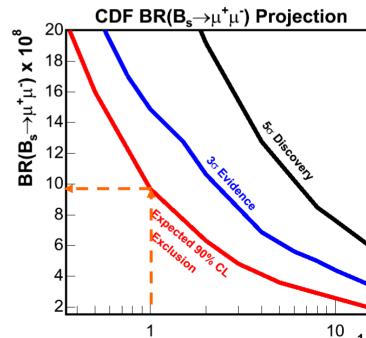
Assume 1 fb-1 of data

> Optimal cuts: LH>0.99 and pT(B)>4GeV

For 360 pb⁻¹ (combined for CMUCMU and CMUCMX)

$$>\langle BR^{90\% CL} \rangle = 2 \times 10^{-7} N_{bg} = 1.5 \pm 0.2$$


>Observe no events, consistent with expectations


>
$$\rightarrow$$
 Br(B_s \rightarrow $\mu\mu$) < 1.6×10⁻⁷ @ 90% CL
Br(B_d \rightarrow $\mu\mu$) < 3.9×10⁻⁷ @ 90% CL

Both CDF B_s and B_d results are $\times 2$ better than the best published result

Expect ×2 improvement at 1 fb⁻¹ >(high 10⁻⁸ region)

>Even better when combined with D0

 $(B/B_s/B^+/\Lambda_h) \rightarrow \mu^+\mu^-h$

 $B^0 \rightarrow \mu^+ \mu^- K^*$ and $B^+ \rightarrow \mu^+ \mu^- K^+$ are already observed at Bfactories

 $B_s \rightarrow \mu^+ \mu^- \phi$ and $\Lambda_b \rightarrow \mu^+ \mu^- \Lambda$ would be the first observations

Shape analysis would be important to probe new physics

Yields (Belle/BaBar)

$B^+ ightarrow ll \ K^+$	$79 \pm 10 \ (253 \text{fb}^{-1})$
$B^0 \rightarrow ll \ K^*$	$82 \pm 11 \ (253 \text{fb}^{-1})$
$B \rightarrow ll X_s$	$68 \pm 14 (140 \text{fb}^{-1})$

The analysis strategy is very similar to that of $B \rightarrow \mu\mu$ (diff: use RAREB LXY)

- Discriminating variables are essentially the same
- > Would try to explore box cuts first (not LH)

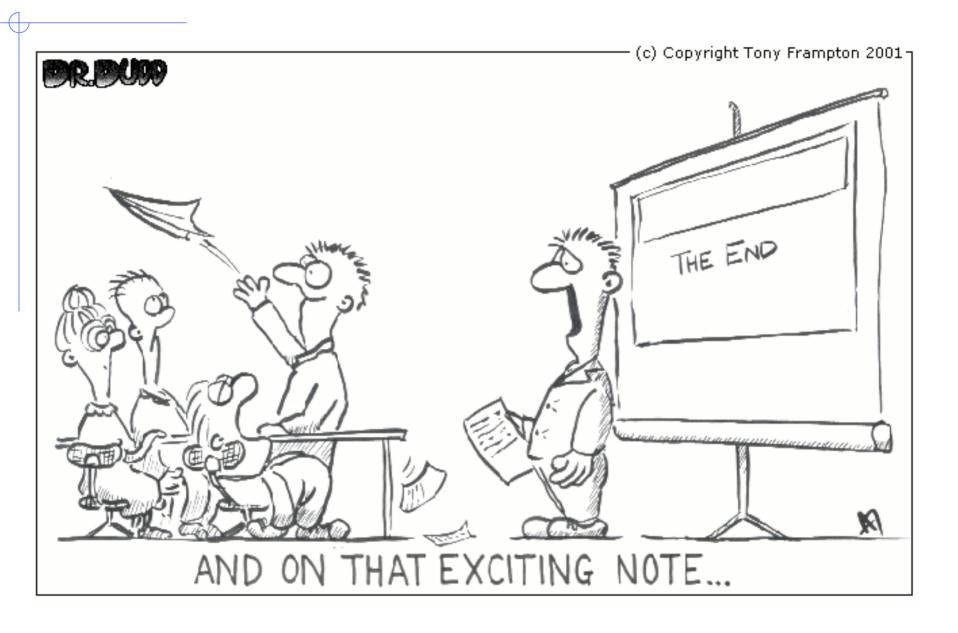
S. Farrington

	,		R. Oldema	
Decay mode:	B ⁺	B ⁰	B _s	
$N(B \to J/\psi h) (260 \text{ pb}^{-1})$	2270	981	95	
BR(B $\to \mu \mu h$) (x10 ⁻⁷)	5.5 * (Belle)	16.5 * (Belle)	16.1 • (hep-ph/0303246)	
BR($\mathbf{B} \to \mathbf{J}/\psi(\mu\mu) \mathbf{h}) (\mathbf{x}10^{-5})$	(5.88±0.25)	(7.70±0.45)	(55±20)	
$\varepsilon(\mu\mu h)/\varepsilon(J/\psi h)$	0.78	0.69	0.69	
Estimated S (260 pb ⁻¹)	16.6	14.6	1.94	
Optimization not done yet, rough estimates \rightarrow B _s $\rightarrow \mu^+\mu^-\phi$ at $\sim 2\sigma$;				

 B^+ and B^0 yields similar to Belle/BaBar; (limit on Λ_b at $0.3Br_{SM}$?)

(1 fb⁻¹) **PRELIM** 3 $S/\sqrt{(S+B)}$ 1.5-2

10/29/04

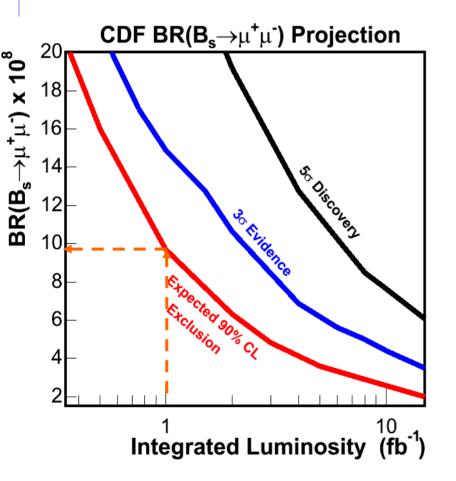

Summary

- $^{\circ}$ Br(B_s → μμ)<1.6×10⁻⁷ at 90% C.L.
- $^{\circ}$ Br(B_d → μμ)<4×10⁻⁸ at 90% C.L.
 - ▶Both should improve ~×2 with 1 fb⁻¹
 - ▶ Prospect for Br($B_s \rightarrow \mu\mu$)~1×10⁻⁸ in Run II still holds
 - Vital for large tanβ supersymmetry
- $\text{PBr}(D \rightarrow \mu\mu) < 2.4 \times 10^{-6} \text{ at } 90\% \text{ C.L. } (69 \text{ pb}^{-1})$
 - ► Expect ~×10-20 improvement with 1 fb⁻¹

With 1 fb⁻¹:

- Expect to have sensitivity to $B^0 \rightarrow \mu^+ \mu^- K^*$ and $B^+ \rightarrow \mu^+ \mu^- K^+$ similar to B-factories (current)
- Expect first evidence of $B_s \rightarrow \mu^+ \mu^- \phi$ and first limit on $\Lambda_b \rightarrow \mu^+ \mu^- \Lambda$
- Substantial improvements in charm → llh decays and D⁰→K⁺ π ⁻

published



BACKUP SLIDES

$B_s \rightarrow \mu\mu$ Prospects

Simplistic: no improvement to analysis

- \rightarrow scale N_{bg} and N_{B+} linearly with Lumi
- → recalculate

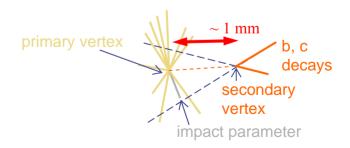
- \rightarrow at best ~3×10⁻⁸ at 90% CL

- •Optimistic:
~ 1/Lumi
 - •Additional handles on bgd exist: tighter muon ID (require CMP) calorimeter isolation additional 2D pointing use mass resolution model in LH
 - •Combine with D0

→BR(B_s→μμ) ≈ 1×10⁻⁸ at 90% CL is possible within Run II (by 09?)

•Can be measured at SM level by CMS at LHC after 2-3 years of data taking (by 10?)

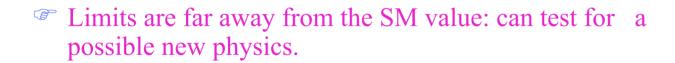
Triggers used

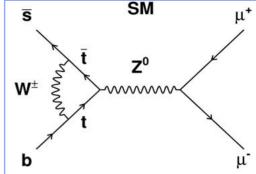

All are input to the various Level-3 triggers
That use the offline quality information

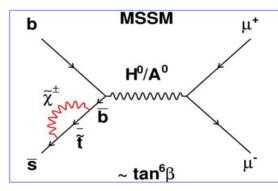
Dimuon trigger

- $p_T > 1.5 \text{GeV}, |\eta| < 0.6$ $p_T > 2 \text{GeV}, 0.6 < |\eta| < 1$
- p_T , ϕ , muon ID used to cut on tracks
- \succ Used for ψ , Y,B \rightarrow μμ(+X)

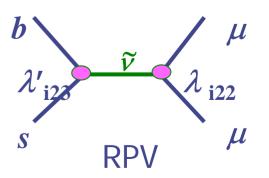
Two Track Trigger


- $p_T > 2GeV, |\eta| < 1$
- p_T , ϕ , d_0 info used to cut on 2 tracks
- >Used for: B,D→hadrons; D→μμ


$B(D) \rightarrow \mu\mu$: Theoretical motivations. Current limits.

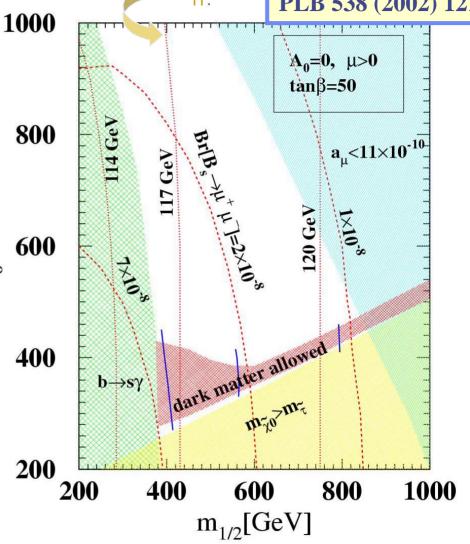

Flavor Changing Neutral Current. Loop contribution only in SM.

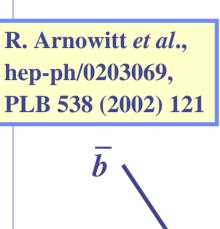
- $>Br_{SM}(B_s \rightarrow \mu^+ \mu^-) = (3.4 \pm 0.5) \times 10^{-9}$
- >Br_{SM}(B_d $\rightarrow \mu^+\mu^-$)=(1.00±0.14) × 10⁻¹⁰ (hep-ph/0303060)
- >Br_{SM}(D⁰ $\rightarrow \mu^+\mu^-$) $\sim 3*10^{-13}$ (GIM suppressed)
- © Only upper experimental limit exists:
 - $>Br_{exp}(B_s \rightarrow \mu^+\mu^-) < 2.0 \times 10^{-6} 90\% \text{ C.L. CDF RunI @100/pb.}$
 - >Br_{exp}(B_d $\rightarrow \mu^+\mu^-$)<1.6×10⁻⁷ 90% C.L. Belle '03 @78/fb.
 - >Br_{exp} $(D^0 \rightarrow \mu^+ \mu^-) < 4.1(4.2)*10^{-6} 90\% \text{ C.L. BEATRICE}(E771)$

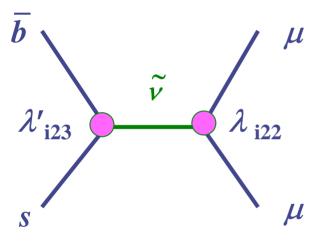


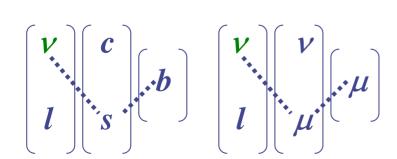
- SSM: Br(B→ $\mu^+\mu^-$) enhanced by tanβ>10 terms ~tan⁶β. Up to 100 over the SM prediction.
- R-parity violating models give tree level contributions. Not heavily constrained by other observables.
- Can be seen in Run2 (esp. $B_s \rightarrow \mu\mu$)
- Other models enhance less. E.g., universal extra dimensions. Up to +70% for $B_s \rightarrow \mu^+ \mu^-$

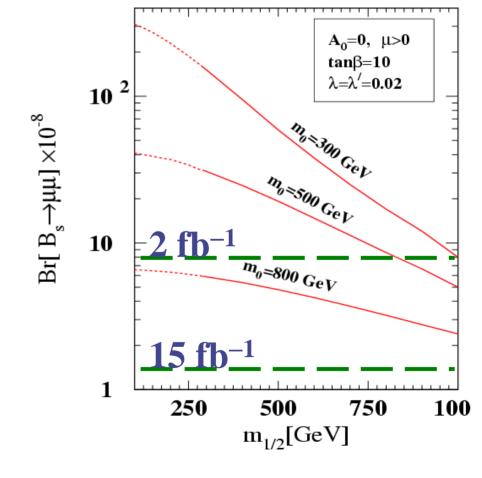
mSUGRA,SO(10)



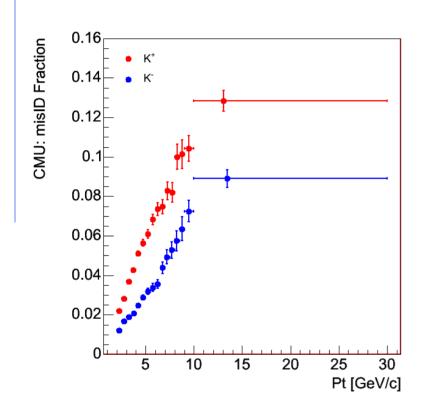

R. Arnowitt *et al.*, hep-ph/0203069, PLB 538 (2002) 121

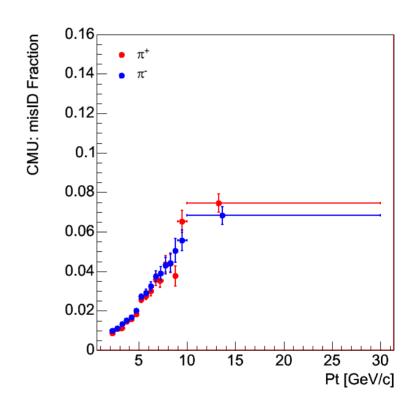

© Overlap with dark matter=LSP allowed region.


Eliminate large parameter space (~ all for tanβ>40), with $Br(B_s \rightarrow \mu^+\mu^-)\sim 10^{-8}$ in Run2



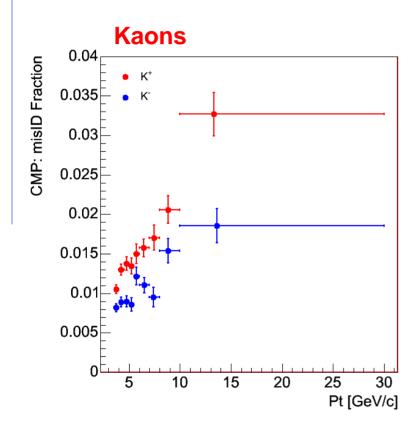
R_P Violation: Br vs. $m_{1/2}$

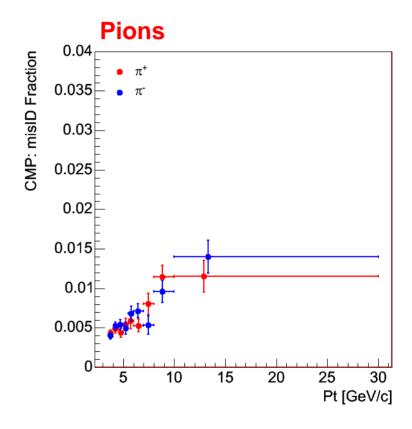




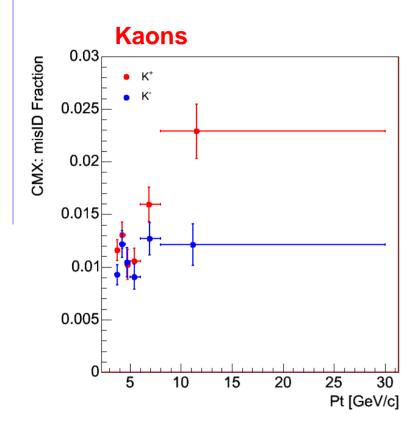
Muon fake rates: CMU

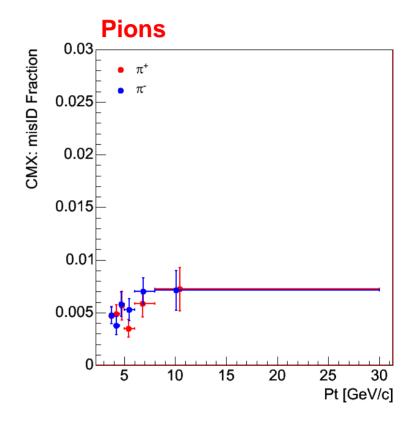
E. BkaonsI. Furic, et al.




Pions

Muon fake rates: CMP


E. Berry, I. Furic, et al.



Muon fake rates: CMX

E. Berry, I. Furic et al.

